
SHIGH STRENGTH CERACS

Final Report Submitted to the

Office of Naval Research, 1Metallurgy Program

Contract No. N00014-67-A-0385-0004, ONR 032-509

H. A. McKinsrry and W. R. Buessem

30 M4arch 1972 APR 2 9

Approved for public release; 3
Distbtioz Unhmited

_, THE MATERIALS RESEARCH LABORATORY

THE PENNSYLVANIA STATE UNIVERSITY

UNIVERSITY PARK, PENNSYLVANIA
RoPrOducod by

NATIONAL TECHNICAL
INFORMATION SERVICE

SPrngfied, Va 2215,



DISCLAIMER NOTICE

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY,



HIGH STRENGTH CERAMICS

Final Report Submitted to the

Office of Naval Research, Metallurgy Program

Contract No. N00014-67-A-0385-0004, ONR 032-509

H. A. IcKinstry and W. R. Buessem

30 March 1972



The Technical Reports, Numbers 3, 4 and 5 constitute the major part

of the final report for project 1100014-67-A-0385-0004, ONR 032-509, since

they contain the findings that have been achieved with the finite eleent

method. In su..ary these are:

STRESS RAISER

The anisotropic elastic properties of a material can act as a

stress raiser. The elastic constants used for study were derived from

the measured elastic compliances for alumina. In other materials the

degree of anisotropy may be larger and hence more important si tce alumina

is not the most anisotropic material. The direction of maximum aniso-

tropy for alumina is, in terms of angles defined in Reports 3 and 4,

a = 0, 0 = 550.

NOTCH FACTOR

The notch factor as calculated by Neuber for hyperbolic cross

secti-n specimens does not apply when the material is anisotropic. In-

stead of 1.45, the FM| value is 1.82. This latter value may not be

correct since there are some obvious deficiencies in the mcdel used. It

may be even highe- since the stress gradients were greater than the model

was designed to h ,ndle.

NON-UNIFO.xi STRESS STATE

The stress increase for a bicrystal in tension was found to yield

stress concentrations at the boundary as high as 1.5. It is thus seen

that the assumption of uniform stress states in bicrystal mechanical

response is not generally accurate.

MODEL FOR CERAMIC BODIES

A model for the study of the mechanical behavior of a polycrystalline

ceramic body has been proposed. For certain selected orientations the

model generates results that are consonate with reality and shows that

the position of maximum shear can be shifted by a change in anisotropy.

There seems to be a limit to the effect anisotropy can make on a system

after the degree of anisotropy has passed a certain value.



When the model was subjected to the case of different orientation

for each crystal the stress gradients which resulted were higher than

could be adequately studied by the model. A further modification of

the model would be necessary for the proper characterizatien of a

ceramic body by this method.

A further technical report will be submitted when the measurements of

the strain distribution in an alumina bicrystal have been completed. Thus

far, the "d" spacing for the (054) diffraction peak has been measured at

systematically selected points over the surface of the bicrystal. The

residual strain has in this way been partially measured. Similar data are

being obtained for the (330) diffraction peak. Preliminary measurements

with an applied tensile stress have shown a linear relationship between

applied stress and te interplanar spacing. Thus, the apparatus is seen

to be in good operating condition. With additional time, the measured strain

in a bicrystal of alumina under tensile loading should be completed. A

request for a no-cost extension has been made.
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Stress -Concentration in Elastically -Aiisotropic
Bi-crystal Tensile Specimens,

A. Introduction

Ceramics are rapidly increasing their importance as technological

materials in a number nf important applications. Due to this increased

interest and also because of the commercial availability of pure metal-oxide

powders and single crystals, a great deal of new knowledge of their

mechanical behavior is being collected. However, the progress in under-

standing some characteristics of the mechanical response of polycrystalline

aggregates of metal oxides is sericusly hampered by the inherent analytical

difficulty encountered in modeling such systems.

In recent years, the problem was approached from the bi-crystal point

of view (1,2,3) in order to gain insight into the process of brittle fracture

at the grain boundaries. This form of failure is sometimes observed in

polycrystalline metal oxides.

Brittle fracture may be induced in suitably shaped tensile specimens

provided that a sufficienLly high stress level is maintained in the gauge

section of the specimen.

A tensile specimen generated either by a hyperboloid of revolution or

by shaping the two opposing sides by hyperbolas as shown in Fig. 1, will

display a substantial tensile stress at the focal plane while maintaining

sufficiently low stresses at the gripping ends.

The hyperbolic tensile specimen shape was used in measuring the

intrinsic brittle strength of single and bi-crystal MgO (I)
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iii

a) Axisymmetric b) Planar

Fig. 1. Hyperbolic Tensile Specimens.

The stress distribution in hyperbolic tensile specimens was studied

(4) (5)
by Neuber and by Leven . A stress concentration factor or notch

factor for homogeneous and isotropic specimens was calculated from an exact

theory and was experimentally confirmed to be accurate within a few percent.
(6)

Some recent investigations howevee, considered th,! influence of

elastic mismatch across a planar boundary in rectangular bi-crystal tensile

specimens. It Yas shown that the anisotropy of elastic properties as well

as the elastic mismatch produce similar effects to that of notches in the

tensile specimens.

Various attempts have been made (7) to find an exact and general solution

for the problem of stress distribution in anisotropic bodies bounded by

cylindrical surfaces. The theoretical approach was successful only for

infinitely large bodies bounded by planes or parabolic surfaces. The intro-

duction of the necessary finite boundary conditions to delimit a finite

body would prevent solution.

An attempt is made here to formulate the problem in such terms that an

approximate method of analysis could be applied, ohich as a limit, would

converge to the exact solution,



3.

B, Method of Analysi5

Since a closed form exact solution is not available for anisotropic

finite bodies at the present time, a solution based on the calculated stiff-

ness of the anisotropic finite continuum was sought. This method of analysis

has been used in the past in various forms such as "Moment Distribution" or

"Deflection Analysis" of structural elements. The Finite Element Method

(F.E.M.) of analysis and its terminology was first formulated by M. J.
(8)

Turner et al. and it was first applied in its present form to an elastic

(9)(11)continuum by R. W. Clough . It has been shown repeatedly (10,11) that,

while the method of analysis is approximate, it converges to the exact

solution as the limiting value.

The first step of applying the F.E.M. analysis is to divide the finite

elastic continuum into polygonal elements. The elements are usually tri-

angular or quadrilateral in shape. The elements are considered to be

jointed at their corners (the nodal points) and the stiffnesses of the

individual elements are assumed to interact through these mutual nodp! points.

The choice of element size requires some experience of the user so that

the possible error in the calculations is minimized for a given number of

elements. The model used is shown in Fig. 2,

It was shown by Wilson (12) that the error E for the displacements uj

of a nodal point j is:

22 u 2u 2
(u) J + 2x-jyj a y + - (1)

where x~y are the coordinates of the nodal point j.
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The error term demonstrates the influence of both the element size and

that of the rate of change of strain. Since the rate of change of strain is

determined by the geometry of the problem, the proper choice of element

size will improve accuracy.

While it is generally true that convergence of finite element solution

increases with decreasing element size, the gain is sometimes offset Dy the

increase in the "round-off" error resulting from the limited word length of

electronic digital computers.

In the stiffness formulation of F.E.M. analysis the unknowns of the

continuum are the nodal displacements. The basic equation which relates

nodal displacements to the nodal forces F will always take the form (10)

in matrix notation:

{F} = [K] {u} (2)

where [K] is the stiffness matrix of the continuum. The global stiffness

matrices are defined as:

[K] = [B] T[D [B] x volume (3)

In Equation (3), [B] and [D] represent the displacement-strain and

stress-strain matrices respectively.

The global stiffness matrix is symmetric and only the boundary con-

ditions render it non-singular. Since the stiffness of a particular nodal

point is defined by the combined effects of only those elements which

contain that particular nodal point, the stiffness matrix is large and is

very sparsely populated. An efficient computer storage scheme is a

necessity to handle large problems successfully.
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Once the global stiffness matrix is developed, the unknown nodal dis-

placements are calculated from equation (2).

The element strains and stresses are computed from the relations:

[e] = [B][u] (4)

[a] = [D][C] (5)

The continuity between the elements is assumed by a suitable linear

polynomial expression for [B] to relate displacements within the tri-

angular elements to that of stress.

The stress-strain relationship in terms of the principal technical con-

stants E, G and U, (Young's modulus, shear modulus and Poisson's ratio

respectively) is given in general form (6).

i a 21 a 01

x El x E2  y E3  z

-v12 i +1 a 932
y E x E2 y 3  Z

(6)

=-13 a _ V23 i +1 C
z E1  x E2  y E3  Z

Yxy = G axy

Isotropy is re-established by the proper choice of the principal technical
constants, i.e., EI=E2=E3 = E; V 12=V 21 and G12 = E/2(I+v).

An excellent description of this technique is given by Zienkiewicz and

Chung in their book (l0). The actual matrix manipulations for any sizable

finite body can only be accomplished by digital computers of storage capacity

in excess of 100 Kbytes.
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The computer program used in this investigation was written in its

original form by H. D. Dahl (13) and was extensively modified for the

present purpose. The program is ,rritten in FORTRAN IV language and con-

sists of a main routine which in turn calls for subroutines during the

processing of input data. The method of solution of the large number of

simultaneous linear equations of expression (2) is an iterative technique

based on the Gauss-Seidel over-relaxation method. The computer output

consists of the re-print of input data, calculated nodal point displacements

and of the stresses at the centroid of each element.

C. Stress Distribution in isotropic Specimens

The nature of stress concentration in hyperbolic specimens is now well

understood due to the pioneering work of Neuber in the early 1930's. It was

shown (4) that in homogeneous and isotropic flat specimens under pure

tension the principal stresses C and a may be calculated readily from
u V

the equations:

A 2 2a =- cosh u cosv (2 + cos v - cosv)
u h2  h2

a A=_4 cosh u cosv (cos2V - cos2V )

sinv °  (7)
where A = P ifV

v + sinv cosv
0 0 0

and h2  sinh2 u + cos2v

u and v are elliptic coordinates, related to the cartesian coordinates by

x =sinhu • cosv
(8)

y =coshu - sinv

The curves with u = const. are ellipses, those with v = const. are hyperbolas.



The surface of the hyperbolic specimen is given by v + vo . The waist of

the specimen is defined by

x= u = 0

(9)

Yv= sinv =a
v~vo 0

Equation (7) gives the principal stresses in terms of p, the average axial

stress in the focal plane of the specimen. It is obvious that both stresses

have their maximum in the focal plane; the values follow from Equation (7) by

setting u = 0. For axisymmetrical specimens generated by a hyperboloid of

revolution the equations are slightly more complex and for the focal plane

the stress equations can be written in the form:

(aJU= 1) 2 [Bcosv + C [1-(a + 2)] cosv}(uiu=o = h

cosv 2
+ - {B + Ccosv -A}4

h

) -{Ccos ( - 1) -A cosv (10)vu=o h2 1 +cosv

+ -- {A - B - C cos 2v}

h4

i__ h A cos v B cosv + C cosv (at- 2}
w = h 2 2 + cosv

h2 = sinh 2u + cos2 v

S= 2(1 -v)

A =C(t-l) (l+ cosv °)
2 

V = Poisson's ratio
B A - C cos v

0

= P + cosvo2= 2
I + (2-a) cosv + cosv

The elliptic coordinates used here are defined by:
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X = sinhu cosy

y = coshu sinv cosw

z = coshu sipv sinw

The surfaces with u = constant are ellipsoids,

those with v = constant are hyperboloids

and those with w = constant are planes through the x-axis.

The svecimen is bounded by the hyperboloid v = v 00

The photoelastic measurements of Leven (5) showed that the numerical

values calculated from the above equations are within a few percent of those

measure- experimentally. In Fig. 3a and 3b, the axial and transverse stress

distribution are plotted in terms of p, the maximum nominal stress. The

parameters of the generating hyperbola for both flat and axisynametrical

specimens were chosen as 0.00098 for a and 0.00124 for b2 respectively,

where a- and b are the constants in the equation defining the surface of the

flat specimen (hyperbola symmetrical to the y-axis)

I~ 2_(j) 1 (11)

Using Neuber's parameter, V0, defining the same surface, one can write

this equation
( ._y__ 2 x 2

- o ) =1 (12)
s2.nv 0  cs

Since sin2vo + cos2vo  =1 (13)

one has o Lultiply a2 and b2 with a normalization factor, f2, so that the

last equation is satisfied. (f2 = 450, f = 21.5) It follows that sin20

= 0.44 and cos2vo = 0.56. Inserting vo in Equation (7) gives the curve plotted

in Fig. 3a as Nueber's exact solution.

The procedure for the axisymmetrical case, plotted in Fig. 3b, is analog.
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The above analyses were repeated using the "Finite Element" method. For the

purpose of analysis a model was constructed consisting of 288 elements and

175 nodal points to represent the transverse half of the tensile specimen as

shown in Fig. 2. The numerical results of the F.E.H. analysis are also

shown in Figs. 3a and 3b. It can be seen that the "Finite Element" analysis

produces a very close set of results, within about 5 percent of the "exact"

solution of Neuber. Some part of this error may be due to the fact that the

triangular elements are finite in size and they are located slightly on one

side of the focal plane. The other possible source of error is that the

strain is considered constant in any one element. Since the rate of change

of strain is large in the immediate vicinity of the focal section, even a

small finite element size introduces some error in the actual numerical value.

The accuracy may be increased, especially in the area near the edge of the

specimen, by refining the triangular mesh used.

In this instance, however, the stress distribution follows a continuous

and smooth curve, thus a relatively accurate extrapolation of F.E.M. data

points to the hyperbolic boundary is possible.

The "exact" and F.E.M. analyses of isotropic tensile specimens served

usefully for checking the relative accuracy of the crystal model and that of the

computing process.

D. Stress Distribution in Amuisotropic Single Crystal Tensile Specimens

Some previous investigations (6) showed that the anisotropy in elastic

properties exerts considerable influence on the stress distribution within

the anisotropic body.

The results of the investigation of the influence of anisotropic

mechanical properties on the stress distribution are presented here for ?fgO
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and A03. The principal rEason for choosing these two materials is the

availability of reliable elastic data in the form of compliances. Also, the

crystallographic symmetries of HgO and Al 203 are representative of a large

number of ceramic materials.

The values of the principal te,.hnij..zl constants of MgO and Al 03 were

calculated (7) from the compliance matrices of Chun- (!4) and of Gieske (15)

respectively.

Some selected values of Young's mcduli of alumina are shown in Figs. 4a,

4b and 4c. In these polar diagrams the anisotropy in the Young's moduli are

shown in the plane perpendicular to one of the two-fold axes. By a polar

rotation of approximately 55* in alumina, the elastic axes may be brought

into a position where the difference between the moduli in direction of the

hexad axis and one of the diad axes is at a maximum. That it is a real

maximum can be seen from Fig. 4b where the polar diagram of Young's

moduli is shown in the plane perpendiculcr to that of the plane of Fig. 4a.

The other point of significance may be that where the moduli show isotropy

in the plane perpendicular to the tensile direction. This point is found at

approximately 100 away from the original setting of axes. Similarly, in

Fig. 4c the variation of Young's moduli is shown in the plane perpendicular

to the plane of Fig. 4a and rotated by 100 from the original setting.

Similar diagrams are presented in Figs. 5a and 5b where the variation

of Young's moduli of magnesia is shoun. The maximum anisotropy occurs at

450 rotation between the <100> and <111> directions. The anisotropy in the

plane perpendicular to that of Fig. 5a is indicated in Fig. 5b where it can

be seen that while the absolute elastic values increase, the relative

difference between them reduces. Based on this set of elastic data, a number

of representative orientations was chosen to keep the computational work

within manageable limits.
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The calculated elastic properties and the corresponding orientations

are tabulazed in Table 1.

It must be mentioned at this stage, that the stress analysis of aniso-

tropic specimens of axisy=etrical shape would require a full three-dimensional

analysis to obtain meaningful results. This, however, is outside the capability

of the present computer program used in these analyses. This work therefore

is restricted :o the analysis of flat-hyperbolic specimen shapes.

Figs. 6 ar.d 7 show the restl.ts of analysis for the flat-hyperbolic speci-

mens of alumina and magnesium-oxide, respectively. The stress distribution is

again shown as a dimensionless stress concentration factor similar to the

isotropic case. It can be seen that while the general appearance of the

distribution curve is unchanged, the maximum stress concentration ranges from

about 1.45 to approximately 1..32 depending on the selected combination of

elastic constants.

Since the orientations we4re chosen to include the limiting maximum and

minimum elastic properties, it is probable that the values of 1.45 and 1.82

are the minimum and maximum concentration factors for all orientations

in alumina.

Similarly, the range of stress concentration factors in magnesium oxide

is found between 1.45 and 1.65. It may be significant that the range of

stress conceivtrat-on factors for alumina and magnesia is somewhat in pro-

portion to their rela'ive degree of anisotropy.

E. Stress Distribution in A.nsotropic Bi-crystal Tensile Specimens

For this part of the ainalysic the bi-crystal was assumed to be composed

by joining a combination of single crystals whose anisotropic stress dis-

tribution was st,'ied in the previous secion. This would dcmonstrate the
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influence of a boundary between two discretely adjoined anisotropic bodies.

The bi-crystal boundary was chosen such that it Lies perpendicular to the

tensile axis and is located at the waist section.

In Table 2 the combination of the bi-crystals is presented together

with a sumary of the "Axial Notch Factor" and derived by FD1 for each of

the composing single crystals as calculated in Section D.

The analytical results are presented in graphical fcrm in Figs. 8 and

9.

It is easily observed that the axial stress distribution along the focal

plane is,with the exception of one case, unchanged compared to the axial

stresses computed for individual single crystals. It appears in general,

that the component of stress perpendicular to a boundary is largely defined

by the elastic anisotropy of the crystals located at either side of the

boundary,and it is influenced only to a small extent by the mutual restraining

influence on each other at the boundary.

The transverse stress distribution in the bi-crystals is not as clear

as was found for the normal stresses. For example, in the bi-crystal

specimen A, the top half of the system showed a reduction in the maximum

value of approximately 43%, allowing for a negative stress concentration at

the outer edges of approximately 0.220. The lower half increased its

maximum by about 18%.

A somewhat analogous situation was found in the bi-crystal specimen D,

though the numerical values were not so extreme as in the case A discussed

above. In both specimens B and C the transverse stiess concentration was

found unchanged.
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Since there were only four combinations studied it could be dangerous

to attapt wide generalizations. However, it appears that those bi-crystal

specimens whose comrpsing shear moduli are widely different will display

changes in their tangential stress component, while those hi-crystals of

approxinately the same shear moduli will behave like two individual single

crystals with no mutual influence.

Table 2. Tabulation of FM- Notch Factor

Elastic Properties Notch Factor

Identification from Table I
Upper Lower Upper Lower

Half Half Half Half

Isotropic Isotropic " 1.45*

A A 1.71

B B 1.82

C C 1.71

Single Crystal D D 1.65

E E 1.52

F F 1.47

G G 1.80

B D 1.85 1.61

B G 1.82 1.82
Bicrystal

B F 1.52 1.50

B F 1.79 1.61

Same as Nueber's calculated value 1.454.



F. Discussion of Results

The results show that the elastic anisotropy of the material has an

effect on the iNeuber notch factor for samples with a hyperioiic cross section.

The maximum effect for constants derived from alumina, using values for

max:ium anisotropy, is 25% more than the Neuber value for an isotropic speci-

men. The use of two different crystals, top and bottom, does not enhance this

value, and the to halves see to act independently of each other. This

latter result indicates vhat seems to be a deficiency in the model and led

to the discovery of two other results that confirm this suspicion.

For two cases, Figs. 9a and 9d, the transverse forces do not come to

zero at the edge of the model. This is a violation of the known boundary

conditions and seems to indicate the presence of very much higher stress

gradients than the present configuration of the model can cope with. There

is anot ,er indication that a finer mesh model is needed: the integrated

force, across the focal plane for the normalized force used, should equal one.

This condition is satisfied only for the isotropic case where the FM4 results

agree with the Neuber result.

The model used as indicated in Fig. 2, is composed of 288 triangles but

in the region of the focal plane from which the results are obtained there

are only 6 triangles. It is likely that this is too coarse a mesh in this

region so that the results are affected by this choice of model division.

The presence of an enhanced notch factor in these results seems to

indicate that in a refined model the effect might be even more pronounced,

slcce it is established that there are stress gradients present that are

higher than this model can take into account.

G. Conclusions

The finite element method as applied to the study of ceramic materials

offers a means of understanding the effect of elastic anisotropy and elastic
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vismatchi on a boundary. Tha use of the h:,perbolic shape adds a complicating

additional factor to the interpretation, since the shape effects the stress

concentration mnore than the elastic properties do.

In order to evaluate the elastic effects in this configuration a finer

mesh model should be used.
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Fig. 5b: Variation of Young's moduli for magnesia.
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IiIi
C/P , ____ 1.80

E = 59.0x 106 lb/in2

E2 =6!.73 xlO 6 b/in2

G2 =19.80 x0 6  lb/in2

V.5 - v 2 = 0. 1186
V2 1 = 0. 136

LO

O.5

0.220

00.0/ 0.02 0.031
0. 0312 in

Distance From iof Specimen iin)

Fig. 6a: Stress distributions of the flat hyperbolic specimen of alu.ina.
Both top half and bottom half of the model are the same anisotropic
material. The curves for two different orientations were so similar
they are plotted as one. The elastic parameters are those corres-
ponding to identidications A and C in Table 1.
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O/P ALUMINA
El =61.7x 106 jb/jn2 l

E2 =59.Ox16 Ib/irt-f 1L65

IE3 =49. Ox ,6 lb/i,72

1-5 G12 = 198x 10 6 lb/lin2

G13  25.5 x10 6  lin 2

V 2= 0.1136
V2 1 = 0. 1186

V13 =0.2712

V~~ 
~ 05.246 

/)l

0. 215(1,2) plane

00.0/ 0.02 0.031
0.0312 in

Distance From CL of Specimen(i7)

Fig. 61): Stress distribution of the flat-hypetholic specimens of alumina.

Both top half and bottom half of the model. are the same anisotropicI. material, d~ntification~ B in Table 1. (Maximum anisotoy)
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* - ALUMINA
E1 = 6L 7 x 106lb/in2  1.71
E2 = S4.9 x 10 6 1b/in2

G12 = 22.8 x 106 lb/in2

V1 12 =0.2709
V21 = 0.2577
a=0 0  9=1O

1.0

crx/p
(1,2) and (1,3) plLcnes

E1 
= 6L 7 x 106 Ib/in2

E2 =64.9 x10 6 lb/in2

G12 =21.76xO 6 lb/in2

V12 = 0.2119
0.5- V2 1 = 0.2015

O-y/p

\0.234

00 0.01 0.02 0.03

0.0312 in
Distance From "T of Specimen (in)

Fig. 6c: Stress distribution of flat-hyperbolic specimen of alumina.
Both top half and bottom half are the same anisotropic material.
"(1,2) plane" refers to Identification B and "(1,3) plane"

refers to Identiffcation D in Table 1.
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C-PALUMIN4 'n

E1 49.06x106 lb/in2

E2 = 61. 73 x 10 6 lin 2  1.52
Gi2 =25.51 x 106 lb/in2

V2 , = 0.2712

l.0-

(2) p lane 1F-E, 49.06 xi06 1b/in2
E2 =59. 00 xIO06 Ib/in2

G1 28.02 xIO6 Ib/in2

V12 =0. 3349
V21 =0.2784

3 0.5-

C -Y /P ( - ) and (3 2 ) p lcnes

0 0.01 0.02 0.03
0. 0312 in

Distance Fr-om (F of Specimen (in)

Fig. 6d: Stress distribution of flat-hyperbolic specimen of single crsa
alumina. Both top half and bottom half are the same anisotropic
material. "(3-1.) plane" refers to Tdentification E arnd "(3-2)
plane refers to Identification F of Table 1.
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V - MgO

(1-2) plane 16
I= 36.23 x 106 lb/in2

E2 =46.47 xI0 6 1b/ifl 2

1.5 L G2 = 22.57 x 106 lbin 2  14
V12 = 0. 31!8 14
V21 =0.2431

(2-1) plane
E, 4 6.4 7 x/0 61lb/n 2

E2 = 36.23 x 106 lb/in,2
G,2= 22.57 x 1061lin2

V 12 =0. 2920
0.-V 21 '='0.29201

-- 0.268
( 1 -2 ) Plane

0 0.01 0.02 0
0.03512 in

Distance From q o f pecimen (in)

Fig. 7: Stress distribution of the flat-hyperbolic specimens of sing-le
crystal "(1-2) plane" and "'2-1) plane" correspond to identifi-
cations 11 and J respectively in Table 1.
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C-X/P
2.0-

I BCRYSTAL COMBINATION (BID) 1.85
AXIAL STRESS (o-x) I

Singlfe Crystal N.E
(D) 1.62

1.0al E___TpH l 615E2~

Bottom Half 6/ .59 25.5

0.51I
0 0.01 0.02 0.031

0.0312 in
Distance From X( Axis (in)

Fig. 8a: Stress distribution of the flat-hyperbolic bicrystal. specimen of

alumina. The notch factor for thle bicrystal, specimen exceeds
slightly thle values for each material separately. The materials
are identifications B and 11 of Table 1.
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-x /P

2.9 I____

BICRYSTAL COCIBINATION (B/G)
AXIAL STRESS (o-x)I1.82

'.5-

Single Crystal N. F
(B) L82
(G) 1.8

1.0 ove5
Top an E3000t _ f- .. . .. -

Top Half (B) 61 59 19.8
Bottom Half (G) 59 61 19.8

0.50 0.01 0.02 0.03

0.0312 in
Distance From X Axis (in)

Fig. 8b: Stress distribution of the flat-hyperbola bicrystal specimen of
alumina using the material properties of identifications B and G
of Table 1. The notch factor of each separately is nearly the
same as that for the bicrystal.
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crx/P
2.0

I BICRYSTAL COMBINATION (E/F)
AXIAL STRESS (o-x)

15E, E2  G 1.52
1. [ Top Half (E) 49 61 25.5

Bottom Half (F) 49 59 28.0

/.0 -

Single Crystal N.F
( E) 1.52
(F) 1.47

0.5 I I I
0 0.01 0.02 0.031

0.03/2 in
Distance From X Axis (in)

Fig. 8c: Stress distribution of the flat-hyperbola bicrystal specimen ofalumina using the material properties of identifications E and F

of Table 1. The notch factor of each separately is nearly the
same as that for the bicrystal.
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cx/P
2. C_ _ _i_ _

BCRYSTAL COMBINATION (B/F)
AXIAL STRESS (c-x)

'.79

1.6/

1.5
El E2  G

Top Half (B) 61 59 19.8
Bottom Half (F) 49 59 28.0

1.0

0 tton

Single Crystal N.E
(B) 1.82
(F) 1.47

0 .5 1 . . .. J
0 0.0/ 0.02 0.031

0.03/2 in
Distance From X Axis (in)

Fig. 8d: Stress distribution of the flat-hyperbola bicrystal specimen of
alumina using the material properties of identifications B and
F of Table 1. The notch factor for the bicrystal lies within

the bounds for the single crystals. This is in contrast to the
results in Fig. 8a.
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-Bicrystal -Tensile -Specimens
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Deartezt cf E ==z~ ~cinisad Ccaa-ic Sdcate
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t27= 2ioinaia crass the grab Lbtazry in r'sdi
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assumption= of uniform stress swaes in bWerysW al cz
response slvdies;, tberefore, is mot gemernly aecirat-e.
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Tprese ce of grain b daries iAnyote Znw ics =Zfnt

the- erqects of grain boundariks Gon Lh rn-mim prp.-c o!pieit~at n~aia
ceramics are =41viewed in Ref. 1. __ o~ eo rmefroi-t nme:_3a u~f

One rzexhod of d~gthe saren.-ib c.harz etistics of gini StUd5..__ __

boundaries is through the use of bicrv-spei-stnal- oacavz heetez__ r

orientation of the bm-A. mbe cw.*trolie t provtdea r O3sl sbi1t nt e i-Ic- i
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stde aebe cd-ce nN~ bI L& I Similar ofe- Cmn at the r-Ades. The stillness raatrix rem-tes
temperature creep resistance of grain lboiiaries in pressure- forces on &he rodes to nodal dis~acernents by:
sintered ALA, b~crystals has ben investigated.

A common feature of these studies was the assumpl~on of [][1~ 1
unifform stress states at and -4,ar the b crystral bo;Aay Tha kvfiet the stiffness matrix,. the nodal disnlacemnents can
this assu mplion is not exact can be seen qualitatively by con- be related to the nodal forces by:
sidering a soft material joined Ns' a stiffer one with a ten-sile 13=K-9(2)
load applied normal to the k-iredary. The larger tensilestrans n &. sotermateialv.The stress in each clement can he found from the nodal dis-strans i thesoftr maeria 11 produce larger transverse
strains as well, assuming roughLy equal Poisson's ratio effects. placements according to:
A tran-verse stress field rear the boun~dary. therefore, is [01=[31 (3%
necessary to preserve compatibility cf deformation. This re-
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Bicrysnttin sp een camont eradslaly e us t hne plification of the finite-element method is given by Zienkiewllcz'

isoelati ofrte colonent gnerayresulattse inarn The method of analysis has been applied to the interfacial
in~~~srs elastic prprte alog gendiecio a te ou-lr

The non-nomkial stress states developed during loading should srs ttsi irsas
be defined before mechanical strength measures can be speci-
fled accuirately. III. Bicrystal Geometry and Properties

The specification of crystalline misorientation across the
IL. Method of Analysis grain boundary is shown in Fig. 1. in which the unprimed axes

A clsedfor anlytcal oluionto he tres fild earthe are the principal axes of the unit cell: coincident with these
tansclosed-rabonaytia sion to th trsfederh are the underl-ned Euler axes. The primed axes define rot.a-

trnvcs gri onay nabcsta! tensile specimen is a tions; from the principal frame through Euler angles a andfi
formidable problem because of the finite width of real spedi- as idicated.
meas. Expanding the specimen geCometry to two joined half- asi
spaces might simplify the. analytical solutien, but this approach
would not be applicable to the finite-tidtin real geometry. Received April 5. 1971; revised copy received June 14,
Furthermore, the most extreme values of the ctress distribu- 1971.Supported in part by the United States Office of Naval Re-tion may be developed at the specimen edges. This infoirma- search under Grant No. N0014-67-A-03S5-0004.
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A Study of a Two-Dimensional Finite Element Model of a
Ceramic Body

5/f

ABSTRACT

The elastic behavior of a ceramic body has been modeled by use of

the finite element method. The model simulates a set of nineteen hexagonal

crystals whose elastic and thermal properties can be independently varied.

Several different configurations of the elastic properties of the crystals

were evaluated under conditions of isostatic, uniaxial and thermal loadings.

The effect of anisotropy shifts the position where the maximum shear acts

in the model, under isostatic and thermal loadings.

INTRODUCTION

The finite element method of analysis has been growing rapidly in

application to widely varying subjects: from earth dams, to whole steam-

ships to pressure valves (Refs. 1,2). The present study may be an applica-

tion to the smallest objects yet studied: the grains of a ceramic body.

The model for study was taken to be the simplest two-dimensional

representation of a ceramic body. Buessem and Lange (Ref. 3) proposed a

hexagonal model in which the forces due to thermal expansion anisotropy

might be considered. In his discussion of the microstructure of ceramics

p. 409 (Ref. 4), Kingery states, "if we restrict the structure to one with

the simplest corners with three grains meeting, the average polygon must

be a hexagon." The model designed for this study consists of nineteen hexa-

gon-shaped crystals as shown in Fig. 1. Each of these hexagons can be given

specific anisotropic elastic constants and anisotropic thermal expansion

coefficients. In this way the model can simulate the random orientation of

crystals in a polycrystalline ceramic body.

This model was further subdivided into 366 triangles with 199 nodes as

shown in Fig. 2, in order to be compatible with the computer program available.

The computer program was written by Dahl (Ref. 5) and has been modified

by Gagorik (Ref. 6) and T. Kovacs (Ref. 7).



70.

Alumina Model

The elastic constants of alumina were used to obtain the values

assigned to each of the nineteen hexagonal crystals of the model. The

elastic compliances used were those measured by J. Geis]:e (Ref. 8). The

values used were converted into the English system of units as are given

in Table I.

Table I

2
Elastic Compliances (inches) /pound

S21 = 0.01620 S2 4 = -S14

S12 = 0.00480 S2 2 = S1 1

S13 = 0.00264 S55 = S44

Sig = 0.00327 Ss6 = -2SI4

S33 = 0.01500 S66 = 2 (S1 1 - SI2)

S44 - 0.00478

These elastic compliances were first transformed by a computer program

written by J. Gagorik (Ref. 6) based on the method of Lieberman and

Zirinsky (Ref. 9) which performs the equivalent of a rotation of the crystal.

Then, these compliances for the rotated crystal were coxverted into technical

constants. For an anisotropic crystal, technical constants are defined by

Lekhnitskii (Ref. 10) to be consonant with the usual elastic constants;

Young's modulus, E, the shear modulus G, and Poisson's ratio, V.

For the two-dimensional plane-stress problem considered, the technical

constants are obtained from the value of the rotated elastic compliances by

the following relationships:

,C+++ " f _ + :. . . +",+ , ..- ° % , . .. . +++ + + +- .. . ,, : : ..,
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EX= -s121sE = 1/S2
yx

= /S66
d Y

V = -S12/S22

, G = /SSG

Hooke's law in plane stress is then expressed as:

E lV/E -vE 0 CTx x y y

F. 0 0 1/GB*xyI

Configurations

A set of six different configurations was processed using four

different types of icading.

In the first configuration, each of the nineteen crystals was given

isotropic constants corresponding to the orientation of each crystal with

the c-axis perpendicular to the plane of the model.

The second, third and fourth configurations were obtained by assigning

to the center crystal technical constants corresponding to the rotation of

an alumina crystal about an axis parallel to the x-axis by amounts of 40,

90 and 140 degrees respectively. The rest of the constants were given the

same isotropic values as in the first configuration.

The fifth configuration was composed of three different sets of con-

stants. The center crystal was oriented so that the c-axis lies in the plane

of the paper and points in the x-direction. The a-axis was supposed to

have been placed in the y-direction. However, a value for the direction
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corresponding to the maximum anisotropy was selected instead. The remain-

ing eighteen crystals were divided in such a way that for the top half of

the crystals all had the same orientation, and the bottom half crystals

all. were given constaats corresponding to a ninety degree rotation from the

other half of the crystals. The constants for these two halves were selected

to correspond to the orientation found by Kovacs (Ref. 7) to possess the

maxin-um anisotropy for alumina. This corresponds to a rotation of the

c-axis of the crystal aboat an axis perpendicular to an a-axis. The rotation

for maximum anisotropy was fifty-five degrees. In the model, constants were

used corresponding to a rotation of fifty degrees.

The sixth configuration was an arrangement designed to represent, as

well as possible, a polycrystalline ceramic body with anisotropic constituents.

The constants were chosen to produce a random arrangement of the crystals.

The center crystal was fixed in its orientation so that the c-axis was

placed in the x-direction and the a-axis in the y-direction. A two-angle

rotational matrix with ten-degree intervals in both angles was used as the

population from which to choose the appropriate constants randomly.

Loadings

Each of the six configurations was subjected to four different loadings.

The first loading corresponded to an isostatic loading. Force components

were placed on each external node in such a way that the resultants would

point to the center of the model. This type of loading produces some shear

in the outermost elements but is evened out before reaching the second

layer of crystals.

The second and third loadings were uniaxial tensions, applied at the

external nodes. In the second type the forces act vertically in the y-

direction and in the third type, the forces act horizontally in the x-

direction. Hence, the y-direction loading is uniform. The x-direction

loading is slightly non-uniform. In the fourth type of loading, tile forces

generated by the thermal expansion of the crystals, with each expansion

determined by its appropriate anisotropic thermal expansion coefficients,

were placed on the external nodes, The system was then allowed to adjust

internally under these forces. For the isotropic case, it was found that

the forces were not identical with those used for the isostatic case. The



forces were calculated, however, so that no shear strains were generated

at any point within the model.

Finite Element Method

The finite element method provides a means of obtaining the solution

of elastic problems which are not directly soluble by standard elastic

mathematical analysis. The structure to be analyzed in divided into a set

of small units, usually triangles, to which the standard elastic theory

can be applied. Each triangle is linked with the triangles surrounding it.

The displacements of the connecting nodes then must be related to the other

in a compatible way, and the computer program finds the answer as a solution

of simultaneous equations.

The time required for computer solution varies with the parameters

assigned to the model and ranges from 60 seconds to 120 seconds. The lower

time is the more common. The program uses a Gauss-Seidel iterative method

for solution, and there is a variation in the number of iterations required

to reduce the error to an acceptable level.

Representation

The figures (Figs. 3-10) which present the results of these analyses

show on one page all six configurations. For each different type of loading

there are two pages; one showing the principal stresses, and the other show-

ing the maximum shear stress.

In the figures presenting the principal-stress data, the length of the

half arrow represents the magnitude of the maximum tensile stress at the
center of each element, and the magnitude of the second principal-stress is

indicated by a line perpendicular to and crossing it. The direction in

which these stresses act is also indicated. in the figures showing the
maximum shear stress (T max ), the direction indicated is forty-five degrees

to the principal stresses, and the magnitudes of both members of the cross

are equal. In order to show the variations in T more clearly for themax

isostatic and thermal loading cases, a scale factor was used to increase

the size by about 16% over that used for the principal stresses.

tZ
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The computer output consists of a tabulation of the stress and strain

components at the center of each triangle.

DISCUSSION

Isostatic Loading

One of the interesting features is evident in comparing the Tmax

plots, Figs. Ab. c and d for the 400, 900 and 1400 rotation. The maximum

shear stress lies outside the central crystal for rotations of 40 and 90

degrees. It lies inside for the 1400 rotation. The effect of the aniso-

tropy is to vary the position in the sample where T will have itsmax
largest value.

In the bicrystal with a central inclusion, Fig. 4e, the distribution of

T has a semblance of a 2-fold symmetry axis outside the central crystal.max
The greatest shear lies inside. Its magnitude is approximately 10% of the

principal stresses. The central crystal is anisotropic. and this adds an

additional complication to the interpretation of the source of the shear

intens-if icati nn.

The random-orientation model gives a maximum shear stress near a corner

of the central crystal. The magnitude of the Tmax is a little more than 6%

of the principal stresses.

Uniaxial Loadings

Two different, compressional uniaxial loadings were used, since their

action at different faces of a hexagon would be different. The figures

(Figs. 5,6,7,8) offer little help in an interpretation of the effects of

anisotropy. The lines of principal stress align themselves with the external

loads. There is some evidence of a slight turning but, as read from the

computer output, the variation of the angle of principal stress varies by

not more than ± 2 degrees. (It is interesting to note that the direction

of principal stress coincides with the principal strain in the isotropic

media and deviates a little in anisotropic media). By extrapolating the

principal stresses to the faces of the central crystal, a maximum variation

of 6% in the different models is observed in the face normal stress and

the face shear stress.
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The changes in the normal force on faces one and four for the case

of vertical uniaxial loading can be obtained from the computer output.

The stresses normalized in terms of the applied stress for the 400? 900

and 1400 rotations are 1.5, 0.3 and -5.0 percent respectively. The effect

of the anisotropy is sufficient to change the sign of the stress from tension

to compression.

In an attempt to gain more information about the -iniaxial loadings, a

different method of presenting the data has been shown. The results shown

in Figs. 11-19 will be discussed under the heading of SYM AP contour maps.

Thermal Loading

For the isotropic case, thermal loading of the model produced absolutely

no internal stresses, (Fig. 9a). With the rotation of the central crystal

about an axis parallel to the x-axis, interesting differences can be noted.

The principal stresses maximize inside the center crystal for the 400 rota-
tion case and, as can be seen in Fig. 9b, there is a tendency for uniaxial

stressing on the left, outside the center crystal boundary. They maximize

outside and to the left of the center crystal for the 900 rotation, (Fig. 9c).

For the 1400 rotation, (Fig. 9d), the principal stresses become almost uni-.

axial on thc right side of the crystal just inside the boundary. The tra-

jectories, as indicated by the arrows, show that in addition to the anisotropy,

the geometrical shape of the boundary also has a strong effect. The high

Tmax near the boundaries of the center crystal emphasizes the alteration of

the distribution of stresses as the anisotropic character of the crystal is

changed, (Figs. 10b,10c and 10d). The distributions are clearly different

in the three cases.

The normal and tangential stresses on each face of the center crystal

were calculated by extrapolating the stresses to the boundary. Parabolic

extrapolation functions were used to find the best fit from four nearest

layers both inside and outside the center crystal. The inner and outer

extrapolations do not always agree. For Table II, which gives the values

for these three rotation models, the maximum deviation for inner and outer

extrapolations was approximately 50% with the average deviation about 10%.

For the isotropic case these stresses would be zero.
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Table II

The normal and tangential stresses (psi) on

the faces of the center crystal

40 degrees 90 degrees 140 degrees

Face N UT 'N UT N UT

1 3800 -70 4400 -65 -1466 0.2
2 15015 +2310 14876 2900 -2670 -994
3 10430 -1475 10350 -1681 -6200 1800
4 9010 +35 9700 24 4074 -70
5 10400 1500 10360 1720 -6150 -1790
6 14940 -2794 14810 -2905 2650 1000

The values for th2 400 and 900 rotations are much more similar than

the diagrams indicate. The 1400 rotation is, however, markedly different.

Whereas the first two leave the center crystal in tension, the third case

has it in a somewhat more complicated state, with four faces experiencing

compresio:a -nd L:o -aces uhdcr tansiun. As indicated, these stresses should

not be regarded as having precision. Since some of the inner and outer

extrapolation values deviate by as much as 50%, it must be assumed that the

model is not sufficiently : ibdivided to take into account the rapidly

changing stress. With the stress gradient so high in the region of interest,

a net model would be indicated as necessary. Unfortunately, time and funds

do not permit such an extension.

Although the deviations of the stresses for the maximum anisotropy case

vary on an average of 45%, all of them have the same sign. This is not the

situation for the random orientation model. Here, the deviations may be as

large as 500% and the extrapolated values are of opposite sign. Clearly, a

finer mesh model is needed for this case. The normal and tangential stresses

range from plus or minus zero to thirty thousand psi. It is unfortunate

that our present model does not give reasonable values for this nearest

approach to the real ceramic body.

SY 4AP Contour Map

Another method for presenting the data from the FEM program is to make

use of an available computer program SYMAP (Ref. 11) which prints out an
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interpolated contour map.

The computer over-prints characters to vary the darkness of the print-

ing, and thus a contour map is developed for visual inspection. The results

for the uniaxial loadings of the rotated center crystal are presented in

Figs. 11-16. The maximum values do not appear in these figures, because only

the region of and near (four layers out) the center crystal are presented.

Where the maxima lie within this region, the figures are easily interpreted

since they are the plot of a single variable only. However, as an aid to

interpretation, contour lines separating the different stress fields have

been hand-drawn.

The data plotted in Figs. 11-16 are the maximum principal stress, al.

Since the uniaxial loading was compressional, the second principal stress will

be negative and of larger magnitude. Thus the CI plotted here will be a

sensitive measure of the deviation from a uniform uniaxial stress distribution.

For a completely uniaxial distribution, a1 should be zero.

A scale that can be used to describe the maps was obtained by dividing

the calculated value for a, by the absolute value of 02. This will produce

a ratio of values from -0.22 to +0.08 on a scale of 8 as listed in Table III.

In Figs. 11-16, the scale number is produced at the center of each triangle

in the finite element model.

Table III

Scale for SYMAP Contour Plots

Scale

Number L 1 2 3 4 5 6 7

!1
-0.28 -0.22 -0.18 -0.12 -0.08 -0.02 +0.02 +0.08

Figs. 11, 12 and 13 correspond to the plots in Figs. 5b,c and d, for

the rotation of the center crystal by 40', 90* and 1400 respectively.
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For the 400 rotation, 01 has its largest magnitude, -0.28, to the

right and to the left of the center crystal in two places adjacent to the

corners. The pattern of the stress distribution for the 900 rotation is

similar. The appearance of the 1400 rotation is considerably different.

The maximum compression is shifted to the top and botLom of the center

crystal. The compression at the center of the center crystal changes from

-0.12 to -0.18 to -0.22, respectively, for the three rotations.

The uniaxial vertical loadings show a considerably different pattern.

Figs. 14, 15 and 16 correspond to the plots in Figs. 7b,c, and d for the

rotation of the center crystal by 400, 900 and 140, respectively. The a1

is slightly in tension, +0.02 for the 400 and 900 cases, but it is com-

pressional for the 1400 case, -0.08. There is a corresponding build-up of

compressional stress, top and bottom in these cases, perpendicular to the

uniaxial stress, but it achieves a maximum value of only -0.12 for the 400

case.

Off Center Models

A slightly different set of models is presented in Fig. 17. The crystal

to the right of the center one has been rotated 40, 90 ° and 140, re-

spe-tively, in Figs. 17a,b and c, and subjected to isostatic loading. Both

T and the principal stresses are presented on the same page. The Tma x max

plots show much more variation than do the plots of the principal stresses.

The distribution of the maximum shear stresses indicates a rather profound

effect of anis'tropy. The larger values of the shear for the 400 case are

outside of and to the left of the rotated crystal, with a considerable build-

up on the slant faces.

The 900 case shows a similar distribution, though the magnitude of the

T is not as large.max C

The distribution of T in the 1400 case is markedly different, withmax

the larger values lying inside the boundaries of the rotated crystal. Similar

behavior was observed in Figs. 4b,c and d, when the rotated crystal was the

center crystal.

. . .
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Simplified Models

The results of the finite element analysis, are plotted in a slightly

different form in Figs. 18c, d and 19. Each principal stress and Tmax

are plotted separately. The first principal stress (maximum tension) is

plotted on the left as a single half arrow at the center of each triangle

of the model. The length of the arrow is proportional to the magnitude of

the stress it represents. The magnitude of the maximum arrow length is

indicated in this figure for each stress. The second principal stress

(maximum compression) is plotted similarly in the center, and the maximum

shear stress, Tmax' is plotted on the right. Only isostatic loading is

considered.

In the case of Model A, a hard isotropic inclusion is inserted into

the system. The Young's modulus of the center crystal is ten times larger

than the surrounding crystals. The stresses on all faces are essentially

equal and raised by the factor 1.36 over that of the completely homogeneous

model. At the boundary the stress is seen to be predominantly radial. The

extrapolated normal stress at the boundary is consistently 3% higher inside

than outside. The shear at the boundary has increased from zero for the

homogeneous case to 50% of the normal stress, and, as seen in Fig. 18a, it is

concentrated outside the center crystal.

For the case of Model B, a soft Isotropic inclusion is enclosed in a

system ten times stiffer. The stresses on each face are reduced by a factor

of 0.27. The surrounding structure could sustain a hole, and so this re-

duction is easily understood. The principal compressional stresses inside

the center crystal are less than 0.20 times the compressional stresses out-

side. The shear is raised to 75% of the average normal stress, and from

Fig. 18b it can be seen to be confined to the region outside the center crystal.

The shear inside the center crystal is essentially zero. The boundary out-

side the center crystal is loaded predominately circumferentially.

The other four models are anisotropic. Because of the relationship

v E =V E for orthotropic materials, a limit is imposed on the degree of
xyox yx y

anisotropy, The ratio of 3/1 permits reasonable values of Poisson' s ratio.
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Model C was given technical constants so that in the y-direction the constants

are continuous. in the x-direction the modulus is three times greater than

the matrix. It might be expected that the stresses would be increased on

faces one and four (faces perpendicular to the x-axis) and that the other

faces would be affected relatively little. The finite element analysis shows

that a stress increase of 1.32 occurs for the x-faces an4 1.20 for the other

faces. The geometric effect of the crystal shape on the trajectories is

evident in Fig. 18c, and it is evident that -Tm has its largest values
max

outside of and all the way around the center crystal.

Model D has technical constants such that only the y-direction is different

from the matrix and the modulus in that direction is 1/3 that of the matrix.

It might be anticipated that there would be no alteration in stress at the

x-faces and a reduction on the other faces. The analysis shows that there

is a stress increase on the x-faces of 1.16 and for the other faces a re-

duction of 0.93. In Fig. 18d, the plot of the principal stresses at the

center of each finite element triangle shows an unusual behavior near the

x-faces. The principal-stress axes are rotated nearly 90 degrees. The

values for the principal stresses are lower inside the center crystal, but

T is nearly uniformly large inside the center crystal. The direction ofmax

principal-stress axes coincides with that of the principal strain axes out-

side the center crystal, but inside they do not.

There is very little difference between Model A (hard isotropic) and

Model E (hard anisotropic). Figures 18a and 18c are essentially identical.

The stresses extrapolated to the boundary differ by about 2%.

It appears that the large change (xlO) in modulus is the dominating

factor. The stress-increase noted for the anisotropic case, where the inner

elastic modulus was three times greater than the matrix, was 1.32 (Model C).

For Model A, where the modulus change was ten times, the stress increase

was 1.36. Therefore, the three-fold increase in the elastic constant is

seen to be almost as effective as the ten-fold increase. Hence, the aniso-

tropic effect of the center crystal is masked to a large extent by the

larger change of both moduli.

There is also little to distinguish Model B (soft isotropic) and Model

F (soft anisotropic), by examination of Figs. 18b and 18f. The stresses at
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the boundary are, however, reduced on all faces for Model F and on the faces

perpendicular to the x-axis, the forces were reduced to less than half the

value they were subjected to for Model D.

Six Random Orientation Models

In Fig. 19 six different random orientations under thermal loading are

given. The center crystal is maintained constant in all of the figures

with -he c-axis in the direction of the x-axis and the a-axis in the y-

direction.

The position of the maximum stresses varies from one different random

arrangement to the next. There is a tendency for maximum stresses to develop

near the corners of the crystals. The stresses extrapolated to the boundaries

from the inside did not compare well with the extrapolation from the outside.

In some instances the extrapolations from one side of the boundary were

large and negative and from the other side were large and positive. A finer-

mesh model seems indicated.

CONCLUSIONS

The elastic behavior of an alumina ceramic body has been modeled by

the use of the finite element method. It is found that:

1) The anisotropic characteristics of the material alter the

position in the model where the magnitude of the shear stress is

maximum under isostatic, uniaxial, and thermal loadings.

2) Under uniaxial loading, the effect of anisotropy under the

conditions examined was to alter the stresses acting on the faces per-

pendicular to the loading forces from compression to tension by about

6% of the applied loading.

3) The inclusion of a crystal with elastic constants ten times
greater or less than the matrix makes such a difference that the effect
of a three fold anisotropy is nearly masked.

4) Stress gradients generated in a model with random orientation

of the crystals is very high. Further conclusions about the effect of

random orientation would require a model better adapted to the high-

stress gradient.
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Fig. 1. Nineteen crystal model of a two dimensional ceramic body. Each
hexagon can be given independent anisotropic elastic and thermal
constants. The orientation of the axes are shown. The faces of
the center crystal are numbered.
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